Multiple Chemical Sensitivity Etiology

Airway Genetics and Ambient Combustion Aerosol

 

                                                                                              (Photo: Patrick Sandusky)

 

The airway epithelium and its sensory innervation become altered to a proinflammatory condition

Deering-Rice 2011, Hazari 2011, Li 2011, Taylor-Clark 2010Baulig 2009, 2003aCalderon-Garciduenas 2008, 2000Veronesi 2003, 2002a, 2002b, 2001, 2000, 1999a, 1999b, Agopyan 2003, Bonvallot 2001, 2000, Gerde 2001, 1997Oortgiesen 2000, Roy 2000, Miyabara 1998,1998a, Steerenberg 1998, Meggs 1997

usually by exposure to a continuous combustion byproduct aerosol - diesel and other exhaust, woodsmoke, and tobacco smoke

OSHA 2012, Block 2009, Pakkanen 2003, Schauer 2002, 2001, 1999, US DOT FHA 2000, Society of Automotive Engineers SAE 940233 1994

- including particle agglomerates with adsorbed hydrocarbons and singlet nonagglomerated nanoparticles

(Lucchini 2012, Mohankumar 2008,  Inoue 2005, Kittelson 1998, Cadle 1999, Kleeman 1999 

Fine particles expected to reach the CNS via trigeminal and olfactory nerve pathways

MCS 11, Calderon-Garciduenas 2010Genter 2009, Matsui 2009, Elder 2006Lewis 2005

Clean Diesel: Public Health Nightmare

 

OSHA: Chemicals in diesel exhaust. 

Carbon Dioxide

Carbon Monoxide

Nitrogen Dioxide

NitricOxide

Particulates

Sulfur Dioxide

Acrolein

o-Anisaldehyde

Benzene

2,3-Benzofuran

Coumarin

Formaldehyde

4-Hydroxycoumarin

m-Hydroxyacetophenone

2-Hydroxy-4-methoxyacetophenone

Menadione

6-Methoxytetralone

3-Methylcoumarin

3-Methyl-2cyclopentane-2-ol-one

Trimethylbenzene

Polynuclear Aromatic Hydrocarbons

including acenaphthene, acenaphthylene, anthracene, benz[a]anthracene, benzo[b]fluoranthene.benzo[k]fluoranthene, benzo[ghi]perylene, benzo[a]pyrene, benzo[e]pyrene, crysene, dibenz[a,h]anthracene, fluoranthene, fluorene, indeno[1,2,3-cd]pyrene, naphthalene, phenanthrene, pyrene

 

Organic compounds in diesel exhaust.

 

SCHAUER J. ET AL. MEASUREMENT OF EMISSIONS FROM AIR POLLUTION SOURCES 2. C1 THROUGH C30 ORGANIC COMPOUNDS FROM MEDIUM DUTY DIESEL TRUCKS. ENV SC TECH 33:1578-87 1999:

 

23 n-Alkanes

including n-butane, n-pentane, n-heptane

22 Branched Alkenes

including isopentane

9 n-Alkenes

including ethene, propene

2 Branched Alkenes

1 Diolefin: 1,3 butadiene

1 Alkyne: ethyne

19 Saturated Cycloalkanes

including cyclopentane, methylcyclopentane, cyclohexane, methylcyclohexane

1 Unsaturated Cycloalkene

38 Aromatic Hydrocarbons

including benzene, toluene, ethylbenzene, m- and p-xylene, n-propylbenzene, p-ethyltoluene, m-ethyltoluene, 1,3,5,-trimethylbenzene,1,2,4,-trimethylbenzene, naphthalene, 2-methylnaphthalene, 1-methylnaphthalene, C2-naphthalenes, C3-naphthalenes, C4-naphthalenes

2 Tricyclic terpenes

1 Diasterane

4 Hopanes

4 Steranes

12 Aliphatic Aldehydes

including formaldehyde, acetaldehyde, propanal

3 Olefinic Aldehydes

2 Aliphatic Ketones

including acetone, butanone

3 Aromatic Aldehydes

including benzaldehyde, acetophenone, 2,5-dimethylbenzaldehyde

3 Docarbonyls

11 n-Alkanoic Acids

2 Alkenedioic Acids

2 Aromatic Acids

4 Other Compounds

1 Unresolved Complex Mixture 

 

Organic compounds in woodsmoke.

 

SCHAUER J. ET AL. MEASUREMENT OF EMISSIONS FROM AIR POLLUTION SOURCES. 3. C1-C29 ORGANIC COMPOUNDS FROM FIREPLACE COMBUSTION OF WOOD. ENV SC TECH 35:1716-28 2001:

 

18 n-Alkanes

including methane, ethane, propane, n-butane, n-heptane

3 Branched Alkanes

9 n-Alkenes

including ethene, propene

5 Branched Alkenes

1 Alkyne: ethyne (acetylene)

2 Diolefins

includng 1,3-butadiene

1 Cycloalkane

1 Cycloalkene

41 Aromatic Hydrocarbons

including benzene, toluene, naphthalene, phenanthrene

9 Phenols and Substituted Phenols

including phenol, o-cresol, m-and p-cresol, dimethylphenols, o-benzenediol

11 Guaiacol and Substituted Guaiacols

3 Syringol and Substituted Syringols

7 Aliphatic Aldehydes

including formaldehyde, acetaldehyde, propanal, hexanal, heptanal

2 Aliphatic Ketones

including acetone, butanone

3 olefinic Aldehydes

including acrolein, crotonaldehyde, methacrolein

4 Aromatic Carbonyls

4 Dicarbonyls

12 n-Alkanoic Acids

2 n-Alkenoic Acids

9 Resin Acids

2 Sugars

4 PAH Ketones

5 Other Compounds

 

Organic compounds in gasoline exhaust.

 

SCHAUER J. ET AL. MEASUREMENT OF EMISSIONS FROM AIR POLLUTION SOURCES. 5. C1-C32 ORGANIC COMPOUNDS FROM GASOLINE-POWERED MOTOR VEHICLES. ENV SC TECH 36:1169-80 2002:

 

6 Branched Alkenes

including isobutene

1 Alkyne: ethyene

10 Saturated Cycloalkanes

including methylcyclopentane

1 Unsaturated Cycloalkene

48 Aromatic Hydrocarbons

including benzene, toluene, ethylbenzene, m- and p-xylene, p-ethyltoluene, m-ethyltoluene, 1,2,4-trimethylbenzene, naphthalene, 2-methylnaphthalene, 1 methylnaphthalene

2 Tricyclic Terpanes

3 Hopanes

2 Ethers

including MTBE, ETBE

12 Aliphatic Aldehydes

including formaldehyde, acetaldehyde, propanal

3 Olefinic Aldehydes

including crotonaldehyde, acrolein, methacrolein

2 Aliphatic Ketones

including acetone, butanone

1 Aromatic Aldehyde: benzaldehyde

4 Aromatic Ketones

3 Dicarbonyls

6 n-Alkanoic Acids

2 Alkanedioic Acids

2 Aromatic acids

3 Other Compounds

 

References

 

Agopyan N et al. Negatively charged 2 and 10 micron particles activate vanilloid receptors, increase cAMP, and induce cytokine release. Tox and Appl Pharm 186(2): 63-76 2003

Badolato Jr. M.E. Mgt 104 Respirators: Particles and Adsorbed Hydro.... mcsmultiplechemicalsensitivity.ning.com 2012 

MCS 9 Airway Origins: PM and a Defective Scrubber. 

MCS 10 Credible Proof: The Study of all Studies. 

MCS 11 PM: Trigeminal and Olfactory Pathways.

MCS 4 Top Studies in a Nutshell.


Baulig A.et al.Role of Paris PM 2.5 components in the pro-inflammatory response induced in airway epithelial cells. Tox 261: 126-35 2009

Baulig A. et al. Involvement of reactive oxygen species in the metabolic pathways triggered by diesel exhaust particles in human airway epithelial cells.Am J Physiol. Lung Cell mol Physiol 285 L671-679 2003a              

Block M.L.and Calderon-Garciduenas L. Air pollution: mechanisms of neuroinflammation & CNS disease. Trends Neuro 32(9): 506-16 2009

Block M.L. et al. Nanometer size diesel exhaust particles are selectively toxic to dopaminergic neurons; the role of microglia, phagocytosis, and NADPH oxidase. FASEB 10.1096/fj.041945fje 2004

Bonvallot V. et al. Organic compounds from diesel exhaust particles elicit a pro-inflammatory response in human airway epithelial cells and induce cytochrome P450 1A1 expression. Am J Resp Cell Mol Biol 25: 515-21 2001 

Bonvallot V. et al. Activation of transcription factors by diesel exhaust particles in human bronchial epithelial cells in vitro. Inhal Tox 12:359-64 2000

Cadle S.H et al. Composition of light duty motor vehicle particulat... in the Denver, Colorado area. Env Sc Tech 33;14: 2328-39 1999

Calderon-Garciduenas L. et al. Urban air pollution: influence on olfactory function and pathology in exposed children and young adults. Exp Tox Pathol 62:91-102 2010

Calderon-Garciduenas L. et al. Long-term air pollution exposure is associated with neuroinflammation, an altered innate immune response, disruption of the blood brain barrier, ultrafine particulate deposition, and accumulation of amyloid beta-42 and alpha-synuclein in children and young adults. Tox Pathol 36: 289-310 2008

Calderon-Garciduenas L. et al. Respiratory tract pathology and cytokine imbalance in clinically healthy children chronically and sequentially exposed to air pollutants. Med Hyp 55(5): 373-378 2000

Deering-Rice C. et al. Electrophilic components of diesel exhaust particles (DEP) activate transient receptor potential ankyrin-1 (TRPA1): a probable mechanism of acute pulmonary toxicity for DEP. Chem Res Tox 24;6:950-9 2011

Elder A. et al. Translocation of inhaled ultrafine manganese oxide particles in the central nervous system. EHP 114:1172-78 2006

Genter, M.B. Uptake of materials from the nasal cavity into the blood and brain. Ann NY Acad Sc 1170: 623-28 2009

Gerde P. et al. The rapid alveolar absorption of diesel-soot adsorbed benzo[a]pyrene: bioavailability, metabolism, and dosimetry of an inhaled particle-borne carcinogen. Carcinogenesis 22;5:741-49 2001

Gerde P. et al. Benzo{a}pyrene at an environmentally relevant dose is slowly absorbed by, and extensively metabolized in, tracheal epithelium. Carcinogenesis 18:1825-32 1997

Hazari M. et al. TRPA1 and sympathetic activation contribute to increased risk of triggered cardiac arrhythmia in hypertensive rats exposed to diesel exhaust. EHP 119:951-57 2011

Inoue K-i. et al. Effects of nanoparticles on antigen-related airway inflammation in mice. Resp Res 6:106 2005

Kittelson D.B. Engines and nanoparticles: a review. J Aerosol Sci 29: 575-88 1998

Kleeman M.J. et al. Size and composition distribution of fine particle matter emitted from woodburning, meat charbroiling, and cigarettes. Env Sc Tech 33;20: 3516-23 1999

Lewis J. et al. Trigeminal uptake and clearance of inhaled magnesium chloride in rats and mice. Neurotox 26:113-23 2005

Li J. et al. TRPV4-mediated calcium influx into human bronchial epithelia upon exposure to diesel exhaust particles. EHO 119: 784-93 2011

Lucchini R.G. et al. Neurological impacts from inhalation of pollutants and the nose-brain connection. Neurotox (2011) doi:10.1016/j.neuro.2011.12.001 in press

Matsui Y. et al. Tracking the pathway of diesel exhaust particles from the nose to the brain by x-ray florescense analysis. Spectrochimica Acta Part B 64: 796-801 2009

Miyabara Y. et al. Murine strain differences in airway inflammation caused by diesel exhaust particles. Eur Resp J 11: 291-98 1998

Miyabara Y. et al. Diesel exhaust enhances allergic airway inflamma... and hyperesponsiveness in mice. Am J Resp Crit Care Med 157: 1138-44 1998a

Mohankumar S.M.J. et al. Particulate matter, oxidative stress and neurotoxicity. Neurotox 29: 479-88 2008

Nassini R. et al. The 'headache tree' via umbellone and TRPA1 activates the trigeminovascular system. Brain doi:10 1093/brain/awr272  2011

Oortgiesen et al. Residual oil fly ash and charged polymers activate epithelial cells and nociceptive sensory neurons. Am J Physiol Lung Cell Mol Physiol 278: L683-95 2000

OSHA: Partial list of chemicals in diesel exhaust.

Pakkanen T.A. et al. Size distributions of mass and chemical compon... in street-level and rooftop PM1 particles in Helsinki. Atmosph Env 37: 1673-90 2003

Schauer J. et al. Measurement of emissions from air pollution sources. 5. C1-C32 organic compounds from gasoline-powered motor vehicles. Env Sc Tech 36:1169-80 2002 

Schauer J. et al. Measurement of emissions from air pollution sources. 3. C1-C29 organic compounds from fireplace combustion of wood. Env Sc Tech 35:1716-28 2001

Schauer J. et al. Measurement of emissions from air pollution sources 2. C1 through C30 organic compounds from medium duty diesel trucks. Env Sc Tech 33:1578-87 1999

Society of Automotive Engineers. Schematic of diesel particles and vapor phase compounds. SAE Paper no. 940233 1994

Steerenberg P.A. et al. Diesel exhaust particles induced release of interleukin 6 and 8 by (primed) human bronchial epithelial cells (BEAS 2B) in vitro. Exp Lung Res 24: 85-100 1998

Taylor-Clark T. & Undem B. Ozone activates airway nerves via the selective stimulation of TRPA1 channels. J Physiol 588;3:423-33 2010

US DOT FHA Addendum to the 1997 Federal Highway Cost Allocation Study. Final report. May 2000

Veronesi B. et al. Effects of subchronic exposure to concentrated ambient particles VII Degeneration of dopaminergic neurons in APO E-1 mice. Inhal Tox 17; 4-5: 235-41 2005

Veronesi B. et al. Electrostatic charge activates inflammatory vanilloid (VR1) receptors. Neurotox 24: 463-73 2003

Veronesi B. et al. The surface charge of visible particulate matter predicts biological activation in human bronchial epithelial cells. Tox and Appl Pharm 178: 144-54 2002a

Veronesi B. et al. Particulate matter inflammation and receptor sensitivity are target cell specific. Inhal Tox 14(2): 159-83 2002b

Veronesi B. and Oortgiesen M. Neurogenic inflammation and particulate matter (PM) air pollutants. Neurotox 22: 795-810 2001

Veronesi B. et al. Vanilloid capsaicin receptors influence inflammatory sensitivity in response to particulate matter. Tox Appl Pharm 15;169(1): 66-76 2000

Veronesi B. et al. Particulate matter initiates inflammatory cytoki... by activation of capsaicin and acid receptors in a human bronchial epithelial cell line. Tox and Appl Pharm 154: 106-15 1999a

Veronesi B.et al. Neuropeptides and capsaicin stimulate the release of inflammatory cytokines in a human bronchial epithelial cell line. Neuropep 33;6: 447-56 1999b

 

 

 

Views: 282

Reply to This

© 2024   Created by michael edward badolato jr.   Powered by

Badges  |  Report an Issue  |  Terms of Service